TG Telegram Group & Channel
Rust | United States America (US)
Create: Update:

🔥CocoIndex — это современный ETL-фреймворк с открытым исходным кодом, предназначенный для подготовки данных к использованию в системах искусственного интеллекта. Он поддерживает пользовательскую логику трансформации и инкрементальные обновления, что делает его особенно полезным для задач индексации данных.

🔧 Основные возможности

- Инкрементальная обработка данных: CocoIndex отслеживает изменения в исходных данных и логике трансформации, обновляя только изменённые части индекса, что снижает вычислительные затраты.
- Поддержка пользовательской логики: Фреймворк позволяет интегрировать собственные функции обработки данных, обеспечивая гибкость при построении пайплайнов.
- Модульная архитектура: Встроенные компоненты для чтения данных (локальные файлы, Google Drive), обработки (разбиение на чанки, генерация эмбеддингов) и сохранения результатов (PostgreSQL с pgvector, Qdrant).
- Поддержка различных форматов данных: Поддержка текстовых документов, кода, PDF и структурированных данных, что делает CocoIndex универсальным инструментом.

🚀 Примеры использования

- Семантический поиск: Индексация текстовых документов и кода с эмбеддингами для семантического поиска.
- Извлечение знаний: Построение графов знаний из структурированных данных, извлечённых из документов.
- Интеграция с LLM: Извлечение структурированной информации из неструктурированных данных с помощью больших языковых моделей.


## ⚙️ Быстрый старт

1. Установите библиотеку CocoIndex:


pip install -U cocoindex

https://github.com/cocoindex-io/cocoindex

2. Настройте базу данных PostgreSQL с расширением pgvector.

3. Создайте файл quickstart.py и настройте пайплайн обработки данных.

4. Запустите пайплайн для обработки и индексации данных.

🟢 Github

🔥CocoIndex — это современный ETL-фреймворк с открытым исходным кодом, предназначенный для подготовки данных к использованию в системах искусственного интеллекта. Он поддерживает пользовательскую логику трансформации и инкрементальные обновления, что делает его особенно полезным для задач индексации данных.

🔧 Основные возможности

- Инкрементальная обработка данных: CocoIndex отслеживает изменения в исходных данных и логике трансформации, обновляя только изменённые части индекса, что снижает вычислительные затраты.
- Поддержка пользовательской логики: Фреймворк позволяет интегрировать собственные функции обработки данных, обеспечивая гибкость при построении пайплайнов.
- Модульная архитектура: Встроенные компоненты для чтения данных (локальные файлы, Google Drive), обработки (разбиение на чанки, генерация эмбеддингов) и сохранения результатов (PostgreSQL с pgvector, Qdrant).
- Поддержка различных форматов данных: Поддержка текстовых документов, кода, PDF и структурированных данных, что делает CocoIndex универсальным инструментом.

🚀 Примеры использования

- Семантический поиск: Индексация текстовых документов и кода с эмбеддингами для семантического поиска.
- Извлечение знаний: Построение графов знаний из структурированных данных, извлечённых из документов.
- Интеграция с LLM: Извлечение структурированной информации из неструктурированных данных с помощью больших языковых моделей.


## ⚙️ Быстрый старт

1. Установите библиотеку CocoIndex:


pip install -U cocoindex

https://github.com/cocoindex-io/cocoindex

2. Настройте базу данных PostgreSQL с расширением pgvector.

3. Создайте файл quickstart.py и настройте пайплайн обработки данных.

4. Запустите пайплайн для обработки и индексации данных.

🟢 Github
Please open Telegram to view this post
VIEW IN TELEGRAM


>>Click here to continue<<

Rust






Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)