#مقاله
Optimizing Multiple Loss Functions with Loss-Conditional Training
ایده ی جالب این مقاله اینه که برای برخی از کاربردها نظیر style transfer و یا image compression و یا ... که چند تا loss مختلف داریم، قبلا مجبور بودیم ضریب هر loss را تعیین کنیم و بعد آموزش بدیم و این ضریب روی خروجی تاثیر داشت.
مثلا در بحث image compression ممکن بود تنظیم این ضریب روی کیفیت عکس و حجم اثر بزاره، مثلا در یک طرف کیفیت بالا و حجم بالا و در طرف مقابل کیفیت پایین و حجم پایین
حالا فکر کنید اگر شبکه عصبی برای کاهش حجم عکس در 3 حالت مختلف ( خیلی کاهش حجم - متوسط - کاهش حجم کم) میخواستیم باید 3 شبکه آموزش میدادیم و ذخیره میکردیم.
در این مقاله گفته فقط یک شبکه ترین کنیم و پارامترهای اینچنینی را بعد از آموزش روش کنترل داشته باشیم.
https://ai.googleblog.com/2020/04/optimizing-multiple-loss-functions-with.html
مرتبط با مقاله:
https://hottg.com/cvision/1884
>>Click here to continue<<