TG Telegram Group & Channel
Python вопросы с собеседований | United States America (US)
Create: Update:

⭐️ LLM-Reasoner

Инструмент, который поможет добавить рассждуения в ваши LLM проекты , подобно OpenAI o1 и deepseek R1.

Функции:
🧠 Пошаговые рассуждения: Больше никаких ответов из «черного ящика»! Узнайте, как именно мыслит ваш LLM, по аналогии с O1.
🔄 Прогресс в реальном времени: позволяет наблюдать за ходом рассуждений с помощью плавных анимаций
🎯 Поддержка множества LLM провайдеров: Работает со всеми провайдерами LiteLLM
🎮 Streamlit: Удобный пользовательский интерфейс
🛠️ Поддердка CLI: для тех, кто любит возиться с командной строкой.
📊 Проверка уверенности ответа: Узнайте, насколько уверен ваш LLM в каждом шаге рассуждений.

⭐️ Установка:
pip install llm-reasoner

Пример с кодом:


from llm_reasoner import ReasonChain
import asyncio

async def main():
# Create a chain with your preferred settings
chain = ReasonChain(
model="gpt-4", # Choose your model
min_steps=3, # Minimum reasoning steps
temperature=0.2, # Control creativity
timeout=30.0 # Set your timeout
)

# Watch it think step by step!
async for step in chain.generate_with_metadata("Why is the sky blue?"):
print(f"\nStep {step.number}: {step.title}")
print(f"Thinking Time: {step.thinking_time:.2f}s")
print(f"Confidence: {step.confidence:.2f}")
print(step.content)

asyncio.run(main())


@ai_machinelearning_big_data


#llm #ml #ai #opensource #reasoning

Forwarded from Machinelearning
⭐️ LLM-Reasoner

Инструмент, который поможет добавить рассждуения в ваши LLM проекты , подобно OpenAI o1 и deepseek R1.

Функции:
🧠 Пошаговые рассуждения: Больше никаких ответов из «черного ящика»! Узнайте, как именно мыслит ваш LLM, по аналогии с O1.
🔄 Прогресс в реальном времени: позволяет наблюдать за ходом рассуждений с помощью плавных анимаций
🎯 Поддержка множества LLM провайдеров: Работает со всеми провайдерами LiteLLM
🎮 Streamlit: Удобный пользовательский интерфейс
🛠️ Поддердка CLI: для тех, кто любит возиться с командной строкой.
📊 Проверка уверенности ответа: Узнайте, насколько уверен ваш LLM в каждом шаге рассуждений.

⭐️ Установка:
pip install llm-reasoner

Пример с кодом:

from llm_reasoner import ReasonChain
import asyncio

async def main():
# Create a chain with your preferred settings
chain = ReasonChain(
model="gpt-4", # Choose your model
min_steps=3, # Minimum reasoning steps
temperature=0.2, # Control creativity
timeout=30.0 # Set your timeout
)

# Watch it think step by step!
async for step in chain.generate_with_metadata("Why is the sky blue?"):
print(f"\nStep {step.number}: {step.title}")
print(f"Thinking Time: {step.thinking_time:.2f}s")
print(f"Confidence: {step.confidence:.2f}")
print(step.content)

asyncio.run(main())


@ai_machinelearning_big_data


#llm #ml #ai #opensource #reasoning
Please open Telegram to view this post
VIEW IN TELEGRAM
4👍3


>>Click here to continue<<

Python вопросы с собеседований






Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)