منحنی یادگیری (Learning Curves)
در پست های قبل در خصوص بیش برازش صحبت کردیم. سوال مهمی که در یادگیری ماشین همیشه با آن مواجهیم این است که آیا متغیرهای (ویژگی ها) زیادتری را به مدل اضافه کنیم یا مدل را ساده کرده و از متغیرهای کمتری استفاده کنیم. استفاده از متغیرهای کمتر علاوه بر اینکه باعث صرفه جویی در منابع (مانند CPU و...) می شود سرعت رسیدن به نتیجه را افزایش می دهد اما باعث ایجاد اُریبی (Bias) می شود در حالی که استفاده از متغیرهای زیاد باعث بهبود عملکرد مدل در داده های آزمایشی می شود اما احتمال زیاد باعث بیش برازش (Over Fitting) می شود.
برای درک این منظور از منحنی های یادگیری استفاده می کنیم. منحنی یادگیری، یک نمودار است که نشان میدهد عملکرد مدل ما (مثلا دقت یا خطا) با افزایش تعداد دادههای آموزشی چگونه تغییر میکند. این منحنی به ما کمک می کند تا مدلهای بهینه ای که همزمان هم اُریبی کمتری دارند و هم واریانس کمتری دارد را شناسایی کنیم.
در پستهای آتی مثال عملی در این خصوص را بررسی خواهیم کرد.
#منحنی_یادگیری
#یادگیری_ماشین
#Learning_Curves
پایتون برای مالی
🆔 hottg.com/python4finance
🆔 ble.ir/python4finance
>>Click here to continue<<
