А что будет, если мы попробуем то же самое доказательство провести на сфере? (Где сумма углов треугольника уже не π — скажем, там есть равносторонний прямоугольный треугольник с тремя прямыми углами!)
Проблема будет в том, что у нас уже нет параллельного переноса, позволяющего отождествить касательные плоскости в разных точках сферы. А вектор скорости идущего вдоль забора человека — лежит в касательной плоскости в той точке, где человек сейчас находится; в частности, угол, на который он поворачивает в вершине — откладывается в касательной плоскости именно в этой вершине. А касательные плоскости в разных точках — разные.
Ну хорошо, а нельзя ли с этим что-нибудь сделать? Например: а что, если идущий человек попытается тащить касательную плоскость с собой?
Пусть он идёт вдоль пути длины L. Поделим его на N отрезков длины L/N. Человек прошёл один отрезок и перенёс касательную плоскость параллельно в R^3. Но в новой точке касательная плоскость другая — параллельно перенесённые вектора накренились на угол порядка (1/N) (точнее, (L/R) (1/N), где R — радиус сферы, но путь и сфера у нас фиксированы, а меняем мы N). Человек спохватился и что-нибудь с этим сделал — например, ортогонально спроецировал новые вектора на касательную плоскость в новой точке. («Какая ещё нормальная компонента? Вам показалось, тут ничего не было!») И так он сделал N раз.
А сильно ли у нас поменялись длины векторов к концу пути? У нас было N операций проецирования — так что на вид кажется, что сильно. Но. Каждая из них умножает длины на косинус соответствующего угла, который порядка (1/N). А cos x = 1 - x^2/2 + …, так что косинусы эти не просто близкие к 1, а отличаются на величину всего лишь порядка 1/N^2 ! Так что даже произведение N таких косинусов близко к 1 (логарифм у него порядка 1/N).
Итого — мы определили параллельный перенос вдоль кривой (на сфере, а на самом деле — на любой поверхности, и даже на любом многообразии, вложенном в хоть какое-нибудь R^n). И он оказался ортогональным — сохраняющим длины касательных векторов — преобразованием.
Но вот только… результат параллельного переноса будет зависеть от выбора пути! Или, что то же самое — пройдя по замкнутому пути, мы можем обнаружить (и почти всегда обнаружим), что наше касательное пространство как-то повернулось.
Собственно — для случая поверхности в R^3, именно этот поворот и есть дефект угла, то, на сколько сумма внешних углов отличается от 2π! Потому что — представим себе, что человек обходит многоугольник, например, на сфере. Он несёт с собой касательное пространство (ну хорошо, для реалистичности — его переносную модель), и отмечает на нём свою скорость. В каждой вершине он добавляет новый сектор-угол поворота. Вернувшись в исходную точку, он получает на своей модели все сектора-углы, на которые он повернулся. И казалось бы, это полный оборот, только заканчивается их сумма в его векторе скорости сейчас, а начинается — в том же самом векторе скорости, обнесённом вокруг всего многоугольника. То есть повёрнутом параллельным переносом!
Так что на формулу, что на сфере радиуса R сумма углов треугольника равна π+(S/R^2) — можно смотреть как на утверждение, что при обходе фигуры площади S параллельный перенос приводит к повороту на S/R^2 (с правильным знаком). (И это не конец рассказа, конечно.)
А что будет, если мы попробуем то же самое доказательство провести на сфере? (Где сумма углов треугольника уже не π — скажем, там есть равносторонний прямоугольный треугольник с тремя прямыми углами!)
Проблема будет в том, что у нас уже нет параллельного переноса, позволяющего отождествить касательные плоскости в разных точках сферы. А вектор скорости идущего вдоль забора человека — лежит в касательной плоскости в той точке, где человек сейчас находится; в частности, угол, на который он поворачивает в вершине — откладывается в касательной плоскости именно в этой вершине. А касательные плоскости в разных точках — разные.
Ну хорошо, а нельзя ли с этим что-нибудь сделать? Например: а что, если идущий человек попытается тащить касательную плоскость с собой?
Пусть он идёт вдоль пути длины L. Поделим его на N отрезков длины L/N. Человек прошёл один отрезок и перенёс касательную плоскость параллельно в R^3. Но в новой точке касательная плоскость другая — параллельно перенесённые вектора накренились на угол порядка (1/N) (точнее, (L/R) (1/N), где R — радиус сферы, но путь и сфера у нас фиксированы, а меняем мы N). Человек спохватился и что-нибудь с этим сделал — например, ортогонально спроецировал новые вектора на касательную плоскость в новой точке. («Какая ещё нормальная компонента? Вам показалось, тут ничего не было!») И так он сделал N раз.
А сильно ли у нас поменялись длины векторов к концу пути? У нас было N операций проецирования — так что на вид кажется, что сильно. Но. Каждая из них умножает длины на косинус соответствующего угла, который порядка (1/N). А cos x = 1 - x^2/2 + …, так что косинусы эти не просто близкие к 1, а отличаются на величину всего лишь порядка 1/N^2 ! Так что даже произведение N таких косинусов близко к 1 (логарифм у него порядка 1/N).
Итого — мы определили параллельный перенос вдоль кривой (на сфере, а на самом деле — на любой поверхности, и даже на любом многообразии, вложенном в хоть какое-нибудь R^n). И он оказался ортогональным — сохраняющим длины касательных векторов — преобразованием.
Но вот только… результат параллельного переноса будет зависеть от выбора пути! Или, что то же самое — пройдя по замкнутому пути, мы можем обнаружить (и почти всегда обнаружим), что наше касательное пространство как-то повернулось.
Собственно — для случая поверхности в R^3, именно этот поворот и есть дефект угла, то, на сколько сумма внешних углов отличается от 2π! Потому что — представим себе, что человек обходит многоугольник, например, на сфере. Он несёт с собой касательное пространство (ну хорошо, для реалистичности — его переносную модель), и отмечает на нём свою скорость. В каждой вершине он добавляет новый сектор-угол поворота. Вернувшись в исходную точку, он получает на своей модели все сектора-углы, на которые он повернулся. И казалось бы, это полный оборот, только заканчивается их сумма в его векторе скорости сейчас, а начинается — в том же самом векторе скорости, обнесённом вокруг всего многоугольника. То есть повёрнутом параллельным переносом!
Так что на формулу, что на сфере радиуса R сумма углов треугольника равна π+(S/R^2) — можно смотреть как на утверждение, что при обходе фигуры площади S параллельный перенос приводит к повороту на S/R^2 (с правильным знаком). (И это не конец рассказа, конечно.)