😱 В ML периодически возникает потребность взять производную от матричного выражения, как правило имеющую вид «производная вектора по вектору». Если вас всегда ломало разобраться с матричным дифференцированием, а строгое формальное изложение матричных производных через дифференциалы вводило в уныние, я недавно записал видео с простым объяснением, как это работает.
🎭 В ролике есть определенная драматургия: будет момент, где мы с вами сами начнем придумывать матричную производную так, чтобы она в частном случае превращалась в уже привычный нам градиент. И оттуда станет ясно, почему матричная производная именно такая, а не, например, транспонированная.
🤓 Всем, кто хочет шарить за ML чуть глубже, чем «ну я тут что-то обучил и в докер завернул, а как работает не мое дело» - рекомендую к просмотру. Жить без матричных производных можно, но компактно оперировать формулами очень удобно.
😱 В ML периодически возникает потребность взять производную от матричного выражения, как правило имеющую вид «производная вектора по вектору». Если вас всегда ломало разобраться с матричным дифференцированием, а строгое формальное изложение матричных производных через дифференциалы вводило в уныние, я недавно записал видео с простым объяснением, как это работает.
🎭 В ролике есть определенная драматургия: будет момент, где мы с вами сами начнем придумывать матричную производную так, чтобы она в частном случае превращалась в уже привычный нам градиент. И оттуда станет ясно, почему матричная производная именно такая, а не, например, транспонированная.
🤓 Всем, кто хочет шарить за ML чуть глубже, чем «ну я тут что-то обучил и в докер завернул, а как работает не мое дело» - рекомендую к просмотру. Жить без матричных производных можно, но компактно оперировать формулами очень удобно.