TG Telegram Group & Channel
gonzo-обзоры ML статей | United States America (US)
Create: Update:

DeepSeek moment

Нельзя ничего не сказать про DeepSeek. Эти ребята просто супер молодцы — так задизраптить всё поле мало кому удавалось. Ну OpenAI со своим ChatGPT, потом Цукерберг с Llama в опенсорсе, теперь вот DeepSeek.

DeepSeek сумели обучить модели хорошего качества по ценам на порядок ниже конкурентов.

Во-первых, DeepSeek-V3 (https://github.com/deepseek-ai/DeepSeek-V3), включает две модели DeepSeek-V3-Base и чат-версию DeepSeek-V3. Обе являются MoE с 671B параметров всего и 37B активных. Не для простых смертных модели, надо иметь неслабую multi-GPU конфигурацию что-то типа 8 H200 (но есть сжатые варианты от разных товарищей). По качеству где-то уровня GPT-4o 0513 и Claude-3.5-Sonnet-1022 и выше LLaMA-3.1 405B.

Есть разные оценки, сколько стоило обучение Ламы 3.1 405B. В самой работе (https://arxiv.org/abs/2407.21783) сказано, что использовалось до 16,384 H100 и упоминается предобучение в 54 дня (но там и другие этапы обучения были). Одна из не самых высоких оценок говорит, что стоить должно было порядка $60M (https://x.com/_LouiePeters/status/1816443587053092917?lang=en).

Про DeepSeek-V3 известно чуть конкретнее. Они использовали H800, урезанный для Китая экспортный вариант H100, и они сами пишут, что для полного обучения потребовалось 2.788M H800 GPU-часов, что соответствует $5.576M при цене аренды H800 в $2 за час.

Ну типа на десятичный порядок меньше. При сравнении с OpenAI наверное разница ещё больше.

Это как с Индией, которая отправляла аппараты на Марс и Луну дешевле, чем в Голливуде фильмы про космос делаются: марсианский Mangalyaan за $74M и лунный Chandrayaan-3 за $75M против фильма “Гравитация” за $100M (https://www.business-standard.com/india-news/what-makes-india-s-space-missions-cost-less-than-hollywood-sci-fi-movies-124110400430_1.html).

Во-вторых, DeepSeek-R1 (https://github.com/deepseek-ai/DeepSeek-R1), модели с ризонингом по типу OpenAI o1 или Google Gemini Thinking. В семействе две модели: DeepSeek-R1-Zero и DeepSeek-R1, обе построены на базе DeepSeek-V3-Base и такого же большого размера.

DeepSeek-R1-Zero (по аналогии с AlphaZero) обучена чистым RL (Group Relative Policy Optimization, GRPO — вариант PPO из другой их статьи, https://arxiv.org/abs/2402.03300), без SFT. Я думаю это очень значимый результат, как в Го оказалось, что можно без человеческих партий, так и здесь постепенно оказывается. Из интересного, во время обучения у модели случился “aha moment”, когда в цепочке рассуждений модель выдала “Wait, wait. Wait. That’s an aha moment I can flag here.” и пересмотрела изначальный подход к решению задачи.

Zero хороша, но иногда уходит в повторы, смешивает языки, не очень читабельна. DeepSeek-R1 перед RL обучена на небольшом (тысячи) количестве CoT примеров, они это называют Cold start data, чтобы дать более качественную начальную точку для RL. Далее тот же Reasoning-oriented RL, что и у Zero. Далее SFT на ризонинг (600k) и не-ризонинг (200k) данных. И потом ещё дополнительный этап RL. Эта модель сравнима с OpenAI-o1-1217.

Из того, что не привело к успеху: Process Reward Model (PRM) и Monte Carlo Tree Search (MCTS).

Также выпущена куча dense дистиллятов (1.5B, 7B, 8B, 14B, 32B, 70B) из R1 на базе Qwen и Llama. Эти сопоставимы с OpenAI-o1-mini.

HuggingFace взялся за Open R1 (https://github.com/huggingface/open-r1), полностью открытое воспроизведение DeepSeek R1. В кои-то веки не Китайские исследователи догоняют западных, а наоборот!

Есть и другая репликация, из Гонконга, от NLP Group @ HKUST (https://github.com/hkust-nlp/simpleRL-reason).

Но и этого DeepSeek показалось мало, и сегодня они выпустили ещё и Janus-Pro, развитие предыдущего Janus (https://github.com/deepseek-ai/Janus) с улучшенным обучением, данными и большим размером. Это мультимодальная моделька на 1B и 7B, умеет принимать на вход текст и картинки и на выходе тоже выдавать текст и картинки. На генерации вроде как бьют Dalle-3, SDXL, SD3-Medium.

DeepSeek moment

Нельзя ничего не сказать про DeepSeek. Эти ребята просто супер молодцы — так задизраптить всё поле мало кому удавалось. Ну OpenAI со своим ChatGPT, потом Цукерберг с Llama в опенсорсе, теперь вот DeepSeek.

DeepSeek сумели обучить модели хорошего качества по ценам на порядок ниже конкурентов.

Во-первых, DeepSeek-V3 (https://github.com/deepseek-ai/DeepSeek-V3), включает две модели DeepSeek-V3-Base и чат-версию DeepSeek-V3. Обе являются MoE с 671B параметров всего и 37B активных. Не для простых смертных модели, надо иметь неслабую multi-GPU конфигурацию что-то типа 8 H200 (но есть сжатые варианты от разных товарищей). По качеству где-то уровня GPT-4o 0513 и Claude-3.5-Sonnet-1022 и выше LLaMA-3.1 405B.

Есть разные оценки, сколько стоило обучение Ламы 3.1 405B. В самой работе (https://arxiv.org/abs/2407.21783) сказано, что использовалось до 16,384 H100 и упоминается предобучение в 54 дня (но там и другие этапы обучения были). Одна из не самых высоких оценок говорит, что стоить должно было порядка $60M (https://x.com/_LouiePeters/status/1816443587053092917?lang=en).

Про DeepSeek-V3 известно чуть конкретнее. Они использовали H800, урезанный для Китая экспортный вариант H100, и они сами пишут, что для полного обучения потребовалось 2.788M H800 GPU-часов, что соответствует $5.576M при цене аренды H800 в $2 за час.

Ну типа на десятичный порядок меньше. При сравнении с OpenAI наверное разница ещё больше.

Это как с Индией, которая отправляла аппараты на Марс и Луну дешевле, чем в Голливуде фильмы про космос делаются: марсианский Mangalyaan за $74M и лунный Chandrayaan-3 за $75M против фильма “Гравитация” за $100M (https://www.business-standard.com/india-news/what-makes-india-s-space-missions-cost-less-than-hollywood-sci-fi-movies-124110400430_1.html).

Во-вторых, DeepSeek-R1 (https://github.com/deepseek-ai/DeepSeek-R1), модели с ризонингом по типу OpenAI o1 или Google Gemini Thinking. В семействе две модели: DeepSeek-R1-Zero и DeepSeek-R1, обе построены на базе DeepSeek-V3-Base и такого же большого размера.

DeepSeek-R1-Zero (по аналогии с AlphaZero) обучена чистым RL (Group Relative Policy Optimization, GRPO — вариант PPO из другой их статьи, https://arxiv.org/abs/2402.03300), без SFT. Я думаю это очень значимый результат, как в Го оказалось, что можно без человеческих партий, так и здесь постепенно оказывается. Из интересного, во время обучения у модели случился “aha moment”, когда в цепочке рассуждений модель выдала “Wait, wait. Wait. That’s an aha moment I can flag here.” и пересмотрела изначальный подход к решению задачи.

Zero хороша, но иногда уходит в повторы, смешивает языки, не очень читабельна. DeepSeek-R1 перед RL обучена на небольшом (тысячи) количестве CoT примеров, они это называют Cold start data, чтобы дать более качественную начальную точку для RL. Далее тот же Reasoning-oriented RL, что и у Zero. Далее SFT на ризонинг (600k) и не-ризонинг (200k) данных. И потом ещё дополнительный этап RL. Эта модель сравнима с OpenAI-o1-1217.

Из того, что не привело к успеху: Process Reward Model (PRM) и Monte Carlo Tree Search (MCTS).

Также выпущена куча dense дистиллятов (1.5B, 7B, 8B, 14B, 32B, 70B) из R1 на базе Qwen и Llama. Эти сопоставимы с OpenAI-o1-mini.

HuggingFace взялся за Open R1 (https://github.com/huggingface/open-r1), полностью открытое воспроизведение DeepSeek R1. В кои-то веки не Китайские исследователи догоняют западных, а наоборот!

Есть и другая репликация, из Гонконга, от NLP Group @ HKUST (https://github.com/hkust-nlp/simpleRL-reason).

Но и этого DeepSeek показалось мало, и сегодня они выпустили ещё и Janus-Pro, развитие предыдущего Janus (https://github.com/deepseek-ai/Janus) с улучшенным обучением, данными и большим размером. Это мультимодальная моделька на 1B и 7B, умеет принимать на вход текст и картинки и на выходе тоже выдавать текст и картинки. На генерации вроде как бьют Dalle-3, SDXL, SD3-Medium.


>>Click here to continue<<

gonzo-обзоры ML статей




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)