TG Telegram Group & Channel
Geometry Weekly | United States America (US)
Create: Update:

№27 (ВсОШ ЗЭ 2015, 11.7)

Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке А пересекает прямую ВС в точке D. Пусть I — центр окружности, вписанной в треугольник ABC. Прямые BI и CI пересекают биссектрису угла ADB в точках Q и P соответственно. Пусть M — середина отрезка PQ.
Доказать, что прямая MI проходит через
середину дуги ACB окружности ω

№27 (ВсОШ ЗЭ 2015, 11.7)

Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке А пересекает прямую ВС в точке D. Пусть I — центр окружности, вписанной в треугольник ABC. Прямые BI и CI пересекают биссектрису угла ADB в точках Q и P соответственно. Пусть M — середина отрезка PQ.
Доказать, что прямая MI проходит через
середину дуги ACB окружности ω


>>Click here to continue<<

Geometry Weekly






Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)