№27 (ВсОШ ЗЭ 2015, 11.7)
Неравнобедренный треугольник ABC вписан в окружность ω. Касательная к этой окружности в точке А пересекает прямую ВС в точке D. Пусть I — центр окружности, вписанной в треугольник ABC. Прямые BI и CI пересекают биссектрису угла ADB в точках Q и P соответственно. Пусть M — середина отрезка PQ.
Доказать, что прямая MI проходит через
середину дуги ACB окружности ω
>>Click here to continue<<
