TG Telegram Group & Channel
fmin.xyz | United States America (US)
Create: Update:

🧠 Самая наглядная демонстрация того, что AB ≠ BA

С того самого момента, как в конце школы я узнал, что матричное умножение не коммутативно, меня одолевало возмущение.

- Да как так-то? 😡

😭 Десятки игрушеных матриц 2х2, перемноженных вручную не оставляли сомнений в этом факте, но понимания не прибавлялось.

🤓 Потом выяснилось, что поворот плоскости может быть задан матрицей 2х2. И, конечно же, если вы посмотрите на любую плоскость, вам будет сразу очевидно, что если вы сначала все повернёте на 35°, а потом на 55°, то результат таких поворотов не зависит от порядка поворотов и всегда будет равен одному повороту на 90°. А значит, произведение матриц поворота плоскости не зависит от порядка произведения и AB = BA.

🏥 Однако, совершенно внезапно оказалось, что для больших размерностей это не работает. То есть уже в трёхмерном мире порядок поворотов важен. То есть если мы знаем, что любой поворот может быть задан матрицей (такие матрицы называют унитарными или ортогональными в случае действительных чисел), то если от перемены порядка поворотов трёхмерного тела финальное положение будет меняться, то это нагляднейшее физическое воплощение того, что AB ≠ BA.

🎮 Именно это мы и наблюдаем на видосе выше. В одной из лучших игр 2023 года (The Legend of Zelda: Tears of the Kingdom) мы можем взять объект и сделать повороты сначала "вверх" на 90°, потом вправо на 90° и наоборот и сравнить результаты таких поворотов. Таким образом, уважаемые геймеры ощущают нюансы линейной алгебры и основы мироздания на кончиках пальцев 🎩.

This media is not supported in your browser
VIEW IN TELEGRAM
🧠 Самая наглядная демонстрация того, что AB ≠ BA

С того самого момента, как в конце школы я узнал, что матричное умножение не коммутативно, меня одолевало возмущение.

- Да как так-то? 😡

😭 Десятки игрушеных матриц 2х2, перемноженных вручную не оставляли сомнений в этом факте, но понимания не прибавлялось.

🤓 Потом выяснилось, что поворот плоскости может быть задан матрицей 2х2. И, конечно же, если вы посмотрите на любую плоскость, вам будет сразу очевидно, что если вы сначала все повернёте на 35°, а потом на 55°, то результат таких поворотов не зависит от порядка поворотов и всегда будет равен одному повороту на 90°. А значит, произведение матриц поворота плоскости не зависит от порядка произведения и AB = BA.

🏥 Однако, совершенно внезапно оказалось, что для больших размерностей это не работает. То есть уже в трёхмерном мире порядок поворотов важен. То есть если мы знаем, что любой поворот может быть задан матрицей (такие матрицы называют унитарными или ортогональными в случае действительных чисел), то если от перемены порядка поворотов трёхмерного тела финальное положение будет меняться, то это нагляднейшее физическое воплощение того, что AB ≠ BA.

🎮 Именно это мы и наблюдаем на видосе выше. В одной из лучших игр 2023 года (The Legend of Zelda: Tears of the Kingdom) мы можем взять объект и сделать повороты сначала "вверх" на 90°, потом вправо на 90° и наоборот и сравнить результаты таких поворотов. Таким образом, уважаемые геймеры ощущают нюансы линейной алгебры и основы мироздания на кончиках пальцев 🎩.
Please open Telegram to view this post
VIEW IN TELEGRAM
👍45😁19169🔥5👾43🤔1


>>Click here to continue<<

fmin.xyz




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)