TG Telegram Group & Channel
Библиотека собеса по Data Science | вопросы с собеседований | United States America (US)
Create: Update:

Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других

Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.

Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.

Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.


🛠 Как это исправить

1️⃣ Локальная адаптация модели:

Разбить данные на сегменты (например, по диапазонам признаков или кластерам).
Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).

2️⃣ Использовать гибридные или иерархические модели:

Методы типа Mixture of Experts, которые «специализируются» на разных областях.
Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.

3️⃣ Добавить или улучшить признаки:

Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.

4️⃣ Улучшить сбор и баланс данных:

Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.

Библиотека собеса по Data Science

Может ли одна модель показывать одновременно высокий bias в одних сегментах данных и высокий variance в других

Да, такое вполне возможно. Модель может хорошо работать на одних подмножествах данных, но плохо — на других.

Высокий bias в одном сегменте: например, в задаче регрессии модель систематически занижает предсказания для больших значений признаков — значит, она недостаточно сложна или плохо учится на этих данных.

Высокий variance в другом сегменте: в областях с редкими или шумными данными модель может давать сильно изменяющиеся прогнозы, что говорит об переобучении и чувствительности к шуму.


🛠 Как это исправить

1️⃣ Локальная адаптация модели:

Разбить данные на сегменты (например, по диапазонам признаков или кластерам).
Обучить отдельные модели для каждого сегмента (например, ансамбли или модели с разными параметрами).

2️⃣ Использовать гибридные или иерархические модели:

Методы типа Mixture of Experts, которые «специализируются» на разных областях.
Иерархические модели или модели с ветвлениями, учитывающие неоднородность данных.

3️⃣ Добавить или улучшить признаки:

Возможно, проблема в том, что модель не видит важных факторов, объясняющих поведение в разных сегментах.

4️⃣ Улучшить сбор и баланс данных:

Недостаток данных в некоторых сегментах вызывает высокую дисперсию — собрать больше данных или использовать аугментацию.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
2


>>Click here to continue<<

Библиотека собеса по Data Science | вопросы с собеседований




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)