TG Telegram Group & Channel
Библиотека собеса по Data Science | вопросы с собеседований | United States America (US)
Create: Update:

В чём разница между MCAR, MAR и MNAR

Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.

🔍 MCAR (Missing Completely at Random)
Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.

📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи.
Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.

🔍 MAR (Missing At Random)
Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.

📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть.
Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.

🔍 MNAR (Missing Not At Random)
Пропуски зависят от самого значения, которое пропущено.
То есть в данных есть систематическая причина, скрытая внутри пропуска.


📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий.
Что делать: здесь простые методы не помогут. Часто требуется:
Моделировать механизм пропуска явно.
Включать индикаторы пропусков как отдельные признаки.
Использовать экспертные знания или специализированные байесовские подходы.

Библиотека собеса по Data Science

В чём разница между MCAR, MAR и MNAR

Это три типа механизмов пропусков в данных — и от понимания того, какой из них у вас, зависит, как правильно обрабатывать пропущенные значения.

🔍 MCAR (Missing Completely at Random)
Пропуски появляются совершенно случайно — не зависят ни от наблюдаемых, ни от ненаблюдаемых переменных.

📌 Пример: датчик случайно перестал записывать температуру из-за сбоя связи.
Что делать: удаление строк или простая импутация — допустимо, модель почти не искажается.

🔍 MAR (Missing At Random)
Пропуски зависят от других наблюдаемых признаков, но не от самого недостающего значения.

📌 Пример: доход клиента не указан, но это чаще бывает у молодых пользователей — и возраст у нас есть.
Что делать: множественная импутация (Multiple Imputation), модели, учитывающие другие признаки, работают хорошо.

🔍 MNAR (Missing Not At Random)
Пропуски зависят от самого значения, которое пропущено.
То есть в данных есть систематическая причина, скрытая внутри пропуска.


📌 Пример: люди с высоким доходом не указывают его в анкете — именно потому, что он высокий.
Что делать: здесь простые методы не помогут. Часто требуется:
Моделировать механизм пропуска явно.
Включать индикаторы пропусков как отдельные признаки.
Использовать экспертные знания или специализированные байесовские подходы.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
3👍1


>>Click here to continue<<

Библиотека собеса по Data Science | вопросы с собеседований




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)