❓В чём разница между активным обучением (Active Learning) и полунаблюдаемым обучением (Semi-Supervised Learning)
Обе методики помогают работать с недостаточным количеством размеченных данных, но делают это по-разному.
🔍Активное обучение: — Фокусируется на выборке самых информативных примеров из неразмеченного пула. — Эти выбранные примеры отправляются эксперту для разметки. — Цель — максимизировать прирост качества модели на каждый новый размеченный экземпляр, минимизируя трудозатраты на аннотацию.
🔍Полунаблюдаемое обучение: — Использует все доступные неразмеченные данные без дополнительной ручной разметки. — Накладывает ограничения на предсказания модели (например, консистентность, кластеризацию), чтобы улучшить обучение. — Позволяет модели самостоятельно извлекать дополнительную информацию из неразмеченных данных.
✅Комбинация подходов: Оптимальная стратегия часто включает сначала активное обучение для точечной разметки ключевых данных, а затем полунаблюдаемое обучение для извлечения пользы из оставшегося большого объёма неразмеченных примеров.
❓В чём разница между активным обучением (Active Learning) и полунаблюдаемым обучением (Semi-Supervised Learning)
Обе методики помогают работать с недостаточным количеством размеченных данных, но делают это по-разному.
🔍Активное обучение: — Фокусируется на выборке самых информативных примеров из неразмеченного пула. — Эти выбранные примеры отправляются эксперту для разметки. — Цель — максимизировать прирост качества модели на каждый новый размеченный экземпляр, минимизируя трудозатраты на аннотацию.
🔍Полунаблюдаемое обучение: — Использует все доступные неразмеченные данные без дополнительной ручной разметки. — Накладывает ограничения на предсказания модели (например, консистентность, кластеризацию), чтобы улучшить обучение. — Позволяет модели самостоятельно извлекать дополнительную информацию из неразмеченных данных.
✅Комбинация подходов: Оптимальная стратегия часто включает сначала активное обучение для точечной разметки ключевых данных, а затем полунаблюдаемое обучение для извлечения пользы из оставшегося большого объёма неразмеченных примеров.