TG Telegram Group & Channel
Библиотека собеса по Data Science | вопросы с собеседований | United States America (US)
Create: Update:

Есть ли встроенные модели регрессии, которые напрямую работают с пропущенными данными

Да, некоторые модели на основе деревьев решений (включая реализации градиентного бустинга и случайных лесов) могут обрабатывать пропущенные данные внутренне. Например, определённые вариации деревьев решений могут использовать суррогатные разбиения или разделения по умолчанию для объектов с отсутствующими значениями признаков.

Это значит, что модель может выбрать альтернативный путь по дереву, если основной признак отсутствует.

Такие механизмы встроены, например, в:
➡️ XGBoost (можно задать missing),
➡️ LightGBM (имеет встроенную поддержку NaN),
➡️ CatBoost (автоматически обрабатывает пропуски).

Однако, несмотря на удобство, следует внимательно оценивать качество модели, особенно если:
➡️ пропусков много,
➡️ отсутствие значений связано с целевой переменной или другими признаками.

В таких случаях простая внутренняя обработка может быть недостаточной, и потребуется анализ природы пропусков или применение более обоснованных методов (импутация, маскирование и др.).

Библиотека собеса по Data Science

Есть ли встроенные модели регрессии, которые напрямую работают с пропущенными данными

Да, некоторые модели на основе деревьев решений (включая реализации градиентного бустинга и случайных лесов) могут обрабатывать пропущенные данные внутренне. Например, определённые вариации деревьев решений могут использовать суррогатные разбиения или разделения по умолчанию для объектов с отсутствующими значениями признаков.

Это значит, что модель может выбрать альтернативный путь по дереву, если основной признак отсутствует.

Такие механизмы встроены, например, в:
➡️ XGBoost (можно задать missing),
➡️ LightGBM (имеет встроенную поддержку NaN),
➡️ CatBoost (автоматически обрабатывает пропуски).

Однако, несмотря на удобство, следует внимательно оценивать качество модели, особенно если:
➡️ пропусков много,
➡️ отсутствие значений связано с целевой переменной или другими признаками.

В таких случаях простая внутренняя обработка может быть недостаточной, и потребуется анализ природы пропусков или применение более обоснованных методов (импутация, маскирование и др.).

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
1


>>Click here to continue<<

Библиотека собеса по Data Science | вопросы с собеседований




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)