TG Telegram Group & Channel
Библиотека собеса по Data Science | вопросы с собеседований | United States America (US)
Create: Update:

Почему логистическая регрессия не подвержена переобучению так же сильно, как деревья решений или нейросети

Логистическая регрессия — это линейная модель, и ее склонность к переобучению значительно ниже, чем у более гибких моделей, таких как decision trees или нейросети. Вот почему:

1. Ограниченная сложность модели

Логистическая регрессия линейно разделяет пространство признаков, что ограничивает ее гипотезы (модельное семейство). Это значит, что она имеет высокое смещение (bias), но низкую дисперсию (variance). Переобучение обычно связано с высокой дисперсией, которой у линейной модели меньше.

2. Малая VC-дименсия

В отличие от деревьев решений, которые могут запомнить структуру обучающей выборки почти целиком, логистическая регрессия имеет гораздо более низкую VC-дименсию, а значит — меньше риск выучить шум.

3. Регуляризация встроена естественным образом

В логистическую регрессию часто добавляют L1 или L2 регуляризацию (например, через параметр C в `sklearn`). Это сдерживает веса модели и предотвращает переобучение.

4. Обучение через оптимизацию функции правдоподобия

Вместо того чтобы искать сложные деревья или веса, как в нейросетях, логистическая регрессия решает выпуклую задачу оптимизации. Это делает процесс более стабильным и предсказуемым.

🔍 Но важно: логистическая регрессия может переобучиться при высокой размерности данных (особенно если признаков больше, чем наблюдений), или при наличии коррелированных и нерелевантных признаков — в этих случаях регуляризация обязательно нужна.

Библиотека собеса по Data Science

Почему логистическая регрессия не подвержена переобучению так же сильно, как деревья решений или нейросети

Логистическая регрессия — это линейная модель, и ее склонность к переобучению значительно ниже, чем у более гибких моделей, таких как decision trees или нейросети. Вот почему:

1. Ограниченная сложность модели

Логистическая регрессия линейно разделяет пространство признаков, что ограничивает ее гипотезы (модельное семейство). Это значит, что она имеет высокое смещение (bias), но низкую дисперсию (variance). Переобучение обычно связано с высокой дисперсией, которой у линейной модели меньше.

2. Малая VC-дименсия

В отличие от деревьев решений, которые могут запомнить структуру обучающей выборки почти целиком, логистическая регрессия имеет гораздо более низкую VC-дименсию, а значит — меньше риск выучить шум.

3. Регуляризация встроена естественным образом

В логистическую регрессию часто добавляют L1 или L2 регуляризацию (например, через параметр C в `sklearn`). Это сдерживает веса модели и предотвращает переобучение.

4. Обучение через оптимизацию функции правдоподобия

Вместо того чтобы искать сложные деревья или веса, как в нейросетях, логистическая регрессия решает выпуклую задачу оптимизации. Это делает процесс более стабильным и предсказуемым.

🔍 Но важно: логистическая регрессия может переобучиться при высокой размерности данных (особенно если признаков больше, чем наблюдений), или при наличии коррелированных и нерелевантных признаков — в этих случаях регуляризация обязательно нужна.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
3


>>Click here to continue<<

Библиотека собеса по Data Science | вопросы с собеседований




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)