TG Telegram Group & Channel
Библиотека собеса по Data Science | вопросы с собеседований | United States America (US)
Create: Update:

Можно ли использовать MSE или MAE для задач классификации

Обычно для классификации используют логистическую или кросс-энтропийную функцию потерь, но в ряде случаев MSE (среднеквадратичную ошибку) или MAE (среднюю абсолютную ошибку) всё же применяют:

🔸 Бинарная классификация с непрерывным выходом: если модель выдаёт не чистый класс, а значение от 0 до 1, можно рассматривать задачу как регрессию и сравнивать это значение с меткой (0 или 1) с помощью MSE или MAE. Но важно понимать, что такой подход даёт слабые градиенты и может сходиться медленнее, чем при использовании кросс-энтропии.

🔸 Порядковая классификация (ordinal): если классы имеют естественный порядок (например, маленький < средний < большой), использование MSE или MAE может быть оправдано — модель учится предсказывать ранг, и ошибки ближе к истине наказываются слабее, чем ошибки, далёкие от неё.

⚠️ Потенциальные проблемы:
При несбалансированных классах MSE/MAE могут вводить в заблуждение
Такие функции не дают вероятностной интерпретации, как логистическая регрессия
Пороговое определение класса (например, всё, что > 0.5 = класс 1) может быть плохо откалибровано

Библиотека собеса по Data Science

Можно ли использовать MSE или MAE для задач классификации

Обычно для классификации используют логистическую или кросс-энтропийную функцию потерь, но в ряде случаев MSE (среднеквадратичную ошибку) или MAE (среднюю абсолютную ошибку) всё же применяют:

🔸 Бинарная классификация с непрерывным выходом: если модель выдаёт не чистый класс, а значение от 0 до 1, можно рассматривать задачу как регрессию и сравнивать это значение с меткой (0 или 1) с помощью MSE или MAE. Но важно понимать, что такой подход даёт слабые градиенты и может сходиться медленнее, чем при использовании кросс-энтропии.

🔸 Порядковая классификация (ordinal): если классы имеют естественный порядок (например, маленький < средний < большой), использование MSE или MAE может быть оправдано — модель учится предсказывать ранг, и ошибки ближе к истине наказываются слабее, чем ошибки, далёкие от неё.

⚠️ Потенциальные проблемы:
При несбалансированных классах MSE/MAE могут вводить в заблуждение
Такие функции не дают вероятностной интерпретации, как логистическая регрессия
Пороговое определение класса (например, всё, что > 0.5 = класс 1) может быть плохо откалибровано

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM
5


>>Click here to continue<<

Библиотека собеса по Data Science | вопросы с собеседований




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)