🕵️♂️Как обнаружить мошеннические транзакции с помощью GMM
В основе — Gaussian Mixture Model: она моделирует распределение данных как смесь нескольких многомерных нормальных распределений. У каждого — своё среднее значение и ковариационная матрица.
⚙️ Модель обучается с помощью алгоритма EM (Expectation-Maximization). После обучения она рассчитывает апостериорные вероятности — насколько транзакция вписывается в каждый из компонентов смеси.
📉 Если транзакция имеет низкую вероятность по всем компонентам, GMM считает её аномальной — потенциально мошеннической.
🎯 Подход особенно полезен в условиях, где трудно собрать размеченные данные, но важно ловить аномалии: финтех, страхование, кибербезопасность.
🕵️♂️Как обнаружить мошеннические транзакции с помощью GMM
В основе — Gaussian Mixture Model: она моделирует распределение данных как смесь нескольких многомерных нормальных распределений. У каждого — своё среднее значение и ковариационная матрица.
⚙️ Модель обучается с помощью алгоритма EM (Expectation-Maximization). После обучения она рассчитывает апостериорные вероятности — насколько транзакция вписывается в каждый из компонентов смеси.
📉 Если транзакция имеет низкую вероятность по всем компонентам, GMM считает её аномальной — потенциально мошеннической.
🎯 Подход особенно полезен в условиях, где трудно собрать размеченные данные, но важно ловить аномалии: финтех, страхование, кибербезопасность.