📍Зачем использовать log-loss вместо accuracy для оценки качества классификатора
Log-loss (логарифмическая функция потерь) учитывает не только правильность предсказания, но и уверенность модели. Если модель предсказывает правильный класс с низкой уверенностью, log-loss будет наказывать её сильнее, чем accuracy.
Например, если модель предсказывает класс A с вероятностью 0.51, а правильный ответ — A, то accuracy посчитает это успешным предсказанием. Log-loss же зафиксирует, что модель не была уверена. Это особенно важно в задачах, где требуется хорошо откалиброванная вероятность (например, в медицине или при принятии финансовых решений).
Таким образом, log-loss — более строгий критерий, который помогает отбирать не просто «угаданные» модели, а те, которые правильно оценивают свои предсказания.
📍Зачем использовать log-loss вместо accuracy для оценки качества классификатора
Log-loss (логарифмическая функция потерь) учитывает не только правильность предсказания, но и уверенность модели. Если модель предсказывает правильный класс с низкой уверенностью, log-loss будет наказывать её сильнее, чем accuracy.
Например, если модель предсказывает класс A с вероятностью 0.51, а правильный ответ — A, то accuracy посчитает это успешным предсказанием. Log-loss же зафиксирует, что модель не была уверена. Это особенно важно в задачах, где требуется хорошо откалиброванная вероятность (например, в медицине или при принятии финансовых решений).
Таким образом, log-loss — более строгий критерий, который помогает отбирать не просто «угаданные» модели, а те, которые правильно оценивают свои предсказания.