TG Telegram Group & Channel
Data Science | Machinelearning [ru] | United States America (US)
Create: Update:

🧠 Что делает train_test_split в ML и зачем он нужен

Функция train_test_split() из библиотеки sklearn разбивает данные на обучающую и тестовую выборки.

Это важно, чтобы проверить, как хорошо модель работает на невидимых данных.

➡️ Пример:

from sklearn.model_selection import train_test_split

X = [[1], [2], [3], [4], [5]]
y = [0, 0, 1, 1, 1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

print("Обучение:", X_train)
print("Тест:", X_test)


🗣️ Почему важно:

• Модель не должна учиться на тех же данных, на которых её оценивают

• test_size указывает, какой процент данных пойдёт на тест

• random_state нужен для воспроизводимости

Это один из самых базовых, но обязательных шагов в любом ML-проекте


🖥 Подробнее тут

🧠 Что делает train_test_split в ML и зачем он нужен

Функция train_test_split() из библиотеки sklearn разбивает данные на обучающую и тестовую выборки.

Это важно, чтобы проверить, как хорошо модель работает на невидимых данных.

➡️ Пример:

from sklearn.model_selection import train_test_split

X = [[1], [2], [3], [4], [5]]
y = [0, 0, 1, 1, 1]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=42)

print("Обучение:", X_train)
print("Тест:", X_test)


🗣️ Почему важно:

• Модель не должна учиться на тех же данных, на которых её оценивают

• test_size указывает, какой процент данных пойдёт на тест

• random_state нужен для воспроизводимости

Это один из самых базовых, но обязательных шагов в любом ML-проекте


🖥 Подробнее тут
Please open Telegram to view this post
VIEW IN TELEGRAM
32


>>Click here to continue<<

Data Science | Machinelearning [ru]




Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)