Data leakage (утечка данных) — это ситуация, когда модель случайно получает информацию о будущем (о целевой переменной), которая недоступна на момент предсказания. Это приводит к переоценке качества модели во время обучения и к плохой работе на реальных данных.
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
# Пример: диагностические данные пациента
df = pd.DataFrame({
'age': [25, 40, 60, 35],
'blood_pressure': [120, 130, 150, 110],
'has_disease': [0, 1, 1, 0],
'diagnosis_code': [0, 1, 1, 0] # случайно совпадает с целевой переменной
})
X = df.drop('has_disease', axis=1)
y = df['has_disease']
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
model = LogisticRegression()
model.fit(X_train, y_train)
print("Train accuracy:", model.score(X_train, y_train))
🗣️ В этом примере diagnosis_code напрямую связан с целевой переменной has_disease. Модель «угадывает» ответы на тренировке, но это не работает в реальности. Такое скрытое совпадение — типичный пример data leakage