Начнем мы с того, что любую комплексную квадрику можно сменой базиса координат свести к виду x₀x₃ = x₁x₂. Это следует из известной теоремы из линейной алгебры о том, что любую невырожденную квадрику над C можно свести к уравнению x₀² + x₁² + x₂² + x₃² = 0. И тут мы пользуемся комплексностью -- над R не всегда так можно.
Отметим, что, как в плоскости, у любой точки можно взять поляру относительно любой квадрики: пусть Q квадрика, A точка, тогда основания касательных из A к Q лежат в одной плоскости, которая высекает на Q конику. Отметим, что если l – прямая, то всевозможные поляры относительно Q точек на l проходят через некоторую прямую m, которая называется полярой прямой l относительно Q.
Таком виде квадрики также можно заметить следующее. Рассмотрим прямые вида tx₀ + x₁ = tx₂ + x₃ = 0, px₀ + x₂ = px₁ + x₃ = 0, где t, p некоторые параметры. С помощью подстановки несложно проверить, что они целиком лежат на нашей квадрике x₀x₃ = x₁x₂. А теперь можно заметить, что ЛЮБЫЕ 2 прямые одного семейства не пересекаются, а ЛЮБЫЕ 2 прямые разных семейств пересекаются, и если через данную точку провести касательную плоскость в ней к квадрике, то эта плоскость пересечет квадрику по двум прямым – одна лежит в одном семействе, вторая – во втором. Прямым вычислением можно проверить, что любая прямая на квадрике принадлежит одному из этих семейств.
Итог: На любой невырожденной квадрике есть ровно два семейства прямых на ней, причем: 1. Любые две прямые одного семейства не пересекаются. 2. Любая прямая одного семейства пересекается с любой прямой другого семейства. 3. Через любую точку A на квадрике проходит ровно 1 прямая каждого семейства, причем две такие прямые на квадрике, проходящие через эту точку, лежат в плоскости, которая касается этой квадрики в точке A.
Напомню, что прямая (ab) касается квадрики Q, где a лежит на Q, если многочлен F, суженный на (ab) (получится однородный многочлен степени 2 от двух переменных) имеет кратный корень или тождественный ноль; множество b таких, что (ab) касается Q -- это плоскость (в общем случае, если квадрика невырожденная, т. е. гладкая).
Отсюда можно понять, что верен пространственный аналог леммы Соллертинского:
Пусть l, m – две скрещивающиеся прямые в пространстве, ф: l -> m – проективное отображение. Тогда, прямые вида Aф(A) в объединении образуют квадрику, проходящую через l, m. Обратно – любая квадрика так получается.
Можно сказать иначе. Пусть задано проективное отображение g из пучка плоскостей через l в пучок плоскостей через m. Тогда прямые всевозможных пересечений плоскостей π и g(π) образуют квадрику, проходящую через l, m.
А теперь, можно заметить такой факт: пусть l₁, l₂ – две скрещивающиеся прямые. Пусть l₀ – другая скрещивающаяся с ними прямая. Пусть x – произвольня точка на l₀. Пусть плоскость, проходящая через x, l₁ пересечет l₂ в точке x₂, а плоскость, проходящая через x, l₂ пересечет l₁ в точке x₁. Тогда отображение x₁ -> x₂ проективно, в частности, (x₁x₂) образуют квадрику.
Собственно, так задача про четыре прямые m₁, m₂, m₃, m₄, которую я постил раньше, получается в секунду: можно рассмотреть пару (m₂, m₃) и применить это рассуждение к этой паре и прямой m₁, а потом и к прямой m₄.
Пространственный Брианшон. Порой, пространственные аналоги утверждений оказываютя проще исходных. И это тот самый случай.
Пусть Q – квадрика, а m₁, m₂, m₃ – прямые одного семейства на ней, l₁, l₂, l₃ – прямые второго семейства на ней. Пусть l₁ пересекает m₁, m₂ в точках A, B. Пусть l₂ пересекает m₂, m₃ в точках C, D. Пусть l₃ пересекает m₃, m₁ в точках E, F. Тогда прямые AD, BE, CF пересекаются в одной точке.
Несмотря на загадочную формулировку, утверждение очевидно – достаточно заметить, что прямые AD, BE, CF попарно пересекаются и не лежат в одной плоскости. Отсюда, они обязательно пересекаются в одной точке.
А теперь задача Вам. Докажите теорему Брианшона, используя ее пространственную версию.
Указание. Пусть A точка, Q квадрика. Спроецируем Q на поляру точки A из точки A. Что в таком случае произойдет с прямыми на Q?
Начнем мы с того, что любую комплексную квадрику можно сменой базиса координат свести к виду x₀x₃ = x₁x₂. Это следует из известной теоремы из линейной алгебры о том, что любую невырожденную квадрику над C можно свести к уравнению x₀² + x₁² + x₂² + x₃² = 0. И тут мы пользуемся комплексностью -- над R не всегда так можно.
Отметим, что, как в плоскости, у любой точки можно взять поляру относительно любой квадрики: пусть Q квадрика, A точка, тогда основания касательных из A к Q лежат в одной плоскости, которая высекает на Q конику. Отметим, что если l – прямая, то всевозможные поляры относительно Q точек на l проходят через некоторую прямую m, которая называется полярой прямой l относительно Q.
Таком виде квадрики также можно заметить следующее. Рассмотрим прямые вида tx₀ + x₁ = tx₂ + x₃ = 0, px₀ + x₂ = px₁ + x₃ = 0, где t, p некоторые параметры. С помощью подстановки несложно проверить, что они целиком лежат на нашей квадрике x₀x₃ = x₁x₂. А теперь можно заметить, что ЛЮБЫЕ 2 прямые одного семейства не пересекаются, а ЛЮБЫЕ 2 прямые разных семейств пересекаются, и если через данную точку провести касательную плоскость в ней к квадрике, то эта плоскость пересечет квадрику по двум прямым – одна лежит в одном семействе, вторая – во втором. Прямым вычислением можно проверить, что любая прямая на квадрике принадлежит одному из этих семейств.
Итог: На любой невырожденной квадрике есть ровно два семейства прямых на ней, причем: 1. Любые две прямые одного семейства не пересекаются. 2. Любая прямая одного семейства пересекается с любой прямой другого семейства. 3. Через любую точку A на квадрике проходит ровно 1 прямая каждого семейства, причем две такие прямые на квадрике, проходящие через эту точку, лежат в плоскости, которая касается этой квадрики в точке A.
Напомню, что прямая (ab) касается квадрики Q, где a лежит на Q, если многочлен F, суженный на (ab) (получится однородный многочлен степени 2 от двух переменных) имеет кратный корень или тождественный ноль; множество b таких, что (ab) касается Q -- это плоскость (в общем случае, если квадрика невырожденная, т. е. гладкая).
Отсюда можно понять, что верен пространственный аналог леммы Соллертинского:
Пусть l, m – две скрещивающиеся прямые в пространстве, ф: l -> m – проективное отображение. Тогда, прямые вида Aф(A) в объединении образуют квадрику, проходящую через l, m. Обратно – любая квадрика так получается.
Можно сказать иначе. Пусть задано проективное отображение g из пучка плоскостей через l в пучок плоскостей через m. Тогда прямые всевозможных пересечений плоскостей π и g(π) образуют квадрику, проходящую через l, m.
А теперь, можно заметить такой факт: пусть l₁, l₂ – две скрещивающиеся прямые. Пусть l₀ – другая скрещивающаяся с ними прямая. Пусть x – произвольня точка на l₀. Пусть плоскость, проходящая через x, l₁ пересечет l₂ в точке x₂, а плоскость, проходящая через x, l₂ пересечет l₁ в точке x₁. Тогда отображение x₁ -> x₂ проективно, в частности, (x₁x₂) образуют квадрику.
Собственно, так задача про четыре прямые m₁, m₂, m₃, m₄, которую я постил раньше, получается в секунду: можно рассмотреть пару (m₂, m₃) и применить это рассуждение к этой паре и прямой m₁, а потом и к прямой m₄.
Пространственный Брианшон. Порой, пространственные аналоги утверждений оказываютя проще исходных. И это тот самый случай.
Пусть Q – квадрика, а m₁, m₂, m₃ – прямые одного семейства на ней, l₁, l₂, l₃ – прямые второго семейства на ней. Пусть l₁ пересекает m₁, m₂ в точках A, B. Пусть l₂ пересекает m₂, m₃ в точках C, D. Пусть l₃ пересекает m₃, m₁ в точках E, F. Тогда прямые AD, BE, CF пересекаются в одной точке.
Несмотря на загадочную формулировку, утверждение очевидно – достаточно заметить, что прямые AD, BE, CF попарно пересекаются и не лежат в одной плоскости. Отсюда, они обязательно пересекаются в одной точке.
А теперь задача Вам. Докажите теорему Брианшона, используя ее пространственную версию.
Указание. Пусть A точка, Q квадрика. Спроецируем Q на поляру точки A из точки A. Что в таком случае произойдет с прямыми на Q?