Обобщение задачи выше, которое возникло во время обсуждения в чате канала
Оранжевые точки X, Y, Z на сторонах – произвольные. Внутри треугольника выбрана произвольная зелёная точка. Синие точки X', Y', Z' симметричны точкам X, Y, Z относительно перпендикуляров к сторонам треугольника, проведённых из зелёной точки. Точки P и Q получаются путём пересечения соответствующих окружностей (см. рисунок).
(!) Точки P и Q равноудалены от зелёной точки
(!) Если X, X', Y, Y', Z, Z' лежат на одной окружности (то есть зелёная точка – её центр), то точки P и Q изогонально сопряжены (получается задача из предыдущего поста)
>>Click here to continue<<
