Исчерпывающий материал по обучению с подкреплением (Reinforcement Learning, RL), в котором подробно описываются различные модели среды, задачи оптимизации, исследуется определение компромисса между теорией и практической эксплуатаций RL.
Отдельно рассматриваются смежные темы: распределенное RL, иерархическое RL, обучение вне политики и VLM.
В работе представлен обзор алгоритмов RL:
Автор - Kevin Murphy, главный научный сотрудник и руководитель команды из 28 ресечеров и инженеров в Google Deepmind. Группа работает над генеративными моделями (диффузия и LLM), RL, робототехникой, байесовским выводом и другими темами.
Кевин опубликовал более 140 статей на рецензируемых конференциях и в журналах, а также 3 учебника по ML, опубликованных в 2012, 2022 и 2023 годах издательством MIT Press. (Книга 2012 года была удостоена премии ДеГроота как лучшая книга в области статистической науки).
@ai_machinelearning_big_data
#AI #ML #Book #RL
>>Click here to continue<<
