VEnhancer - генеративная система апсемлинга пространственно-временных характеристик, которая улучшает результаты существующих методов преобразования текста в видео путем добавления большего количества деталей в пространственной области и синтетического детализированного движения во временной области.
Он гибко адаптируется к различным коэффициентам апсемплинга в диапазоне 1x~8x.
VEnhancer устраняет артефакты и коллизии движения сгенерированных видео, используя диффузионную модель и дообученные модели ControlNet.
Несколько дней назад VEnhancer получил обновление:
Эксперименты, проведенные во время разработки показывают, что VEnhancer превосходит существующие методы апсемплинга видео и современные методы улучшения синтезированных видео.
⚠️ Для обработки видео в 2K разрешении при fps=>24 требуется около 80 GB VRAM.
Использование VEnhancer возможно через CLI, с помощью GradioUI и в виде неофициальной ноды (WIP) для ComfyUI.
# Clone repo
git clone https://github.com/Vchitect/VEnhancer.git
cd VEnhancer
# Create environment
conda create -n venhancer python=3.10
conda activate venhancer
# Install requirments:
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
pip install -r requirements.txt
sudo apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
bash run_VEnhancer.sh
python gradio_app.py
@ai_machinelearning_big_data
#AI #Text2Video #VEnchancer #ML