TG Telegram Group & Channel
Machinelearning | United States America (US)
Create: Update:

🌟 VideoPrism: энкодер, заточенный для понимании видеоконтента.

VideoPrism - базовый визуальный энкодер от Google. Это универсальный инструмент, способный разобраться в самых разных нюансах видеоконтента: от простого распознавания объектов до генерации описаний или ответов на вопросы.

По заявлению создателей, VideoPrism демонстрирует топовые результаты на 31 из 33 общедоступных бенчмарков. В тестах на zero-shot, VideoPrism обошел аналоги в задачах классификации (Kinetics-600) и ответов на вопросы (MSRVTT-QA), даже не используя дополнительных модальностей вроде аудио.

В основе VideoPrism - ViT, но с существенными модификациями, учитывающими специфику видеоданных. В его создании инженеры Google DeepMind применили так называемый "факторизованный" подход, разделяя обработку пространственных и временных измерений и исключили слой глобального усреднения, чтобы сохранить максимум информации из каждого кадра и его временной позиции.

Секрет эффективности VideoPrism кроется в его тщательно продуманном двухэтапном методе обучения на гигантском корпусе данных в 600+ миллионов пар "видео-текст" и чуть менее миллиарда "изображение-текст" из набора данных WebLI:

На первом этапе модель осуществляет своего рода "синхронизацию" между видео- и текстовым энкодерами. Используя огромные массивы пар "видео-текст", они учатся сопоставлять визуальные данные с их семантическими описаниями посредством контрастивного обучения. Это позволяет видеоэнкодеру освоить основные визуальные концепции.

На втором этапе обучение продолжается уже исключительно на видеоданных, применяя усовершенствованную технику маскированного моделирования. Здесь часть видеороликов подвергается маскированию, а VideoPrism должен восстановливать скрытые части.

Token shuffling (предотвращает "копипасту" ошибок декодера) и global-local distillation (перенос знаний из первого этапа), помогают VideoPrism одновременно усваивать детали изображений и тонкости движений, избегая при этом "катастрофического забывания".

▶️В открытом доступе опубликованы 2 версии, Base и Large:

🟢VideoPrism-B, 114М параметров, на базе ViT-B;

🟠VideoPrism-L, 354M параметров, на базе ViT-L.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🟡Arxiv
🟡Google Collab
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Encoder #VideoPrism #Google #DeepMind

🌟 VideoPrism: энкодер, заточенный для понимании видеоконтента.

VideoPrism - базовый визуальный энкодер от Google. Это универсальный инструмент, способный разобраться в самых разных нюансах видеоконтента: от простого распознавания объектов до генерации описаний или ответов на вопросы.

По заявлению создателей, VideoPrism демонстрирует топовые результаты на 31 из 33 общедоступных бенчмарков. В тестах на zero-shot, VideoPrism обошел аналоги в задачах классификации (Kinetics-600) и ответов на вопросы (MSRVTT-QA), даже не используя дополнительных модальностей вроде аудио.

В основе VideoPrism - ViT, но с существенными модификациями, учитывающими специфику видеоданных. В его создании инженеры Google DeepMind применили так называемый "факторизованный" подход, разделяя обработку пространственных и временных измерений и исключили слой глобального усреднения, чтобы сохранить максимум информации из каждого кадра и его временной позиции.

Секрет эффективности VideoPrism кроется в его тщательно продуманном двухэтапном методе обучения на гигантском корпусе данных в 600+ миллионов пар "видео-текст" и чуть менее миллиарда "изображение-текст" из набора данных WebLI:

На первом этапе модель осуществляет своего рода "синхронизацию" между видео- и текстовым энкодерами. Используя огромные массивы пар "видео-текст", они учатся сопоставлять визуальные данные с их семантическими описаниями посредством контрастивного обучения. Это позволяет видеоэнкодеру освоить основные визуальные концепции.

На втором этапе обучение продолжается уже исключительно на видеоданных, применяя усовершенствованную технику маскированного моделирования. Здесь часть видеороликов подвергается маскированию, а VideoPrism должен восстановливать скрытые части.

Token shuffling (предотвращает "копипасту" ошибок декодера) и global-local distillation (перенос знаний из первого этапа), помогают VideoPrism одновременно усваивать детали изображений и тонкости движений, избегая при этом "катастрофического забывания".

▶️В открытом доступе опубликованы 2 версии, Base и Large:

🟢VideoPrism-B, 114М параметров, на базе ViT-B;

🟠VideoPrism-L, 354M параметров, на базе ViT-L.


📌Лицензирование: Apache 2.0 License.


🟡Статья
🟡Набор моделей
🟡Arxiv
🟡Google Collab
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Encoder #VideoPrism #Google #DeepMind
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM


>>Click here to continue<<

Machinelearning








Share with your best friend
VIEW MORE

United States America Popular Telegram Group (US)