TG Telegram Group Link
Channel: Neural Networks | Нейронные сети
Back to Bottom
🌟 EuroBERT: энкодеры нового поколения.

Исследовательская группа под патронажем Centrale Supélec (Университет Париж-Сакле) выпустила в открытый доступ EuroBERT — семейство мультиязычных энкодеров, обученных на 5 трлн. токенов из 15 языков, включая русский.

EuroBERT сочетает инновационную архитектуру с поддержкой контекста до 8192 токенов, что делает это семейство идеальным для анализа документов, поиска информации, классификации, регрессии последовательности, оценки качества, оценки резюме и задач, связанных с программированием, решением математических задачи.

В отличие от предшественников (XLM-RoBERTa и mGTE), EuroBERT объединил GQA, RoPE и среднеквадратичную нормализацию, чтобы достичь беспрецедентной эффективности производительности даже в сложных задачах. Второе немаловажное преимущество EuroBERT - в обучение помимо текстовых данных были включены примеры кода и решения математических задач.

Самая младшая модель EuroBERT с 210 млн. параметров показала рекордные результаты: в тесте MIRACL по многоязычному поиску её точность достигла 95%, а в классификации отзывов (AmazonReviews) — 64,5%. Особенно выделяется умение работать с кодом и математикой — в бенчмарках CodeSearchNet и MathShepherd EuroBERT опережает аналоги на 10–15%.

▶️Состав релиза:

🟢EuroBERT-210М
🟢EuroBERT-610М
🟢EuroBERT-2.1В

⚠️ EuroBERT можно использовать непосредственно с transformers, начиная с версии 4.48.0

⚠️ Для достижения максимальной эффективности, разработчики рекомендуют запускать EuroBERT с Flash Attention 2

▶️ Пример инференса:


from transformers import AutoTokenizer, AutoModelForMaskedLM

model_id = "EuroBERT/EuroBERT-210m"

tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForMaskedLM.from_pretrained(model_id, trust_remote_code=True)

text = "The capital of France is <|mask|>."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)

# To get predictions for the mask:
masked_index = inputs["input_ids"][0].tolist().index(tokenizer.mask_token_id)
predicted_token_id = outputs.logits[0, masked_index].argmax(axis=-1)
predicted_token = tokenizer.decode(predicted_token_id)
print("Predicted token:", predicted_token)
# Predicted token: Paris


Лицензирование: Apache 2.0 License.


Статья
Коллекция на HF
Arxiv
GitHub (Скоро)

#AI #ML #Encoder #EuroBERT
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🔥 Китайцы снова жгут: Baidu выпустили ERNIE 4.5 и ERNIE X1, мощные модели по невероятно низкой цене!

Вот все, что вам нужно знать.

⚡️ERNIE 4.5

- Мулльтимодальная модель, превосходит GPT 4.5 в нескольких бенчмарках всего за 1% от цены GPT 4.5
- OpenAI GPT 4.5 - Input: $75 / 1M токенов, Output: $150 / 1M токенов;
- ERNIE 4.5 - Input: $0.55 / 1M токенов, Output: $2,20 / 1M токенов

⚡️ERNIE X1

- Ризонинг модель с мультимодальными возможностями, спроизводительностью на уровне с DeepSeek R1, но в два раза дешевле.

Чатбот с искусственным интеллектом ERNIE Bot доступен бесплатно для всех пользователей.

Обе модели доступны в свободном доступе ERNIE Bot на его официальном сайте: https://yiyan.baidu.com.

#ernie #ai #llm #Baidu
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
🌟 YOLOE — это усовершенствованная версия алгоритма обнаружения объектов, вдохновлённая классической архитектурой YOLO и разработанная командой THU-MIG.

Архитектура YOLO (You Only Look Once) получила своё название благодаря подходу, при котором нейронная сеть анализирует всё изображение целиком за один проход, чтобы определить присутствие и расположение объектов. Это отличается от других методов, которые сначала выделяют потенциальные области с объектами, а затем отдельно классифицируют их, что требует нескольких обработок одного изображения

YOLOE сохраняет принцип однократного взгляда на изображение для детекции объектов, но вносит архитектурные улучшения, направленные на повышение точности и эффективности модели.

Ключевые отличия от классического YOLO:

- Оптимизированная архитектура: В YOLOE внедрены новые подходы для более эффективной обработки признаков, что позволяет улучшить качество детекции без значительного увеличения вычислительных затрат.
- Повышенная точность: Улучшенные модули и методы, такие как ре-параметризация отдельных блоков, способствуют более точному обнаружению объектов, включая мелкие и сложно различимые элементы.
- Скорость и эффективность: YOLOE сохраняет высокую скорость инференса, делая его пригодным для задач в реальном времени, при этом обеспечивая конкурентоспособное соотношение производительности и точности.

▶️YOLOE требует в 3 раза меньших затрат на обучение по сравнению с YOLO-Worldv2, что делает процесс обучения более экономичным

YOLOE представляет собой современное и улучшенное решение для задач детекции объектов, совмещающее лучшие стороны классического YOLO с новыми архитектурными подходами.

🖥Github
🟡Статья
🟡HF
🟡Colab

#yoloe #opensource #ml #ai #yolo #objectdetection
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Forwarded from Machinelearning
✔️ OpenAI тестирует ChatGPT-коннектор к Google Drive и Slack.

OpenAI планирует запустить новую функцию «Коннекторы ChatGPT», которая позволит подписчикам плана "Team" подключать учетные записи Google Диска и Slack к ChatGPT, позволяя отвечать на вопросы на основе файлов, презентаций, электронных таблиц на этих ресурсах. В будущем коннекторы ChatGPT планируется расширить на Microsoft SharePoint и Box.

"Коннекторы" разрабатываются, чтобы дать возможность корпоративным пользователям получать доступ к внутренней информации так же легко, как при поиске в Интернете. Компаниям, участвующим в тестировании "коннекторов", необходимо предоставить OpenAI минимум 100 документов, таблиц, презентаций или диалогов в канале Slack.
techcrunch.com

✔️ B300 от Nvidia поступит в опытное производство во 2 квартале 2025 года.

Аналитик TF International Securities Минг-Чи Куо предположил, что новый чип B300 станет ключевым моментом пресс-конференции GTC 2025. HBM был значительно модернизирован с 192 ГБ до 288 ГБ, а вычислительная производительность была улучшена на 50% (FP4) по сравнению с B200. Ожидается, что B300 будет запущен в опытное производство во 2 квартале 2025 г., а массовое производство — в 3-м квартале 2025 г.
jiemian.com

✔️ Гарвард отменит плату за обучение для семей с доходом до 200 000 долларов в год.

Гарвардский университет объявил о расширении правил стипендий. Для студентов бакалавриата, чей доход семьи не превышает 200 000 долл. в год, плата за обучение будет отменена, а для студентов, чей доход семьи не превышает 100 000 долл. в год, обучение будет полностью бесплатным.

Пенсильванский университет и Массачусетский технологический институт приняли аналогичные решения. В то время, когда плата за обучение во многих ведущих ВУЗах США превышает 90 000 долл. в год, эта политика сделают их более доступными.
wsj.com

✔️ Llama скачали более 1 миллиарда раз.

Марк Цукерберг написал в своем аккаунте на платформе Threads, что «открытое» семейство моделей Llama было загружено более 1 миллиарда раз. По сравнению с 650 миллионами загрузок в начале декабря 2024 года рост скачиваний составил примерно 53% всего за 3 месяца.
Mark Zukerberg в Threads

✔️ NVIDIA, Alphabet и Google объединяют усилия для развития агентного и физического ИИ.

Три ИТ-гиганта объявили о новом этапе давнего партнерства, направленном на продвижение ИИ, расширение доступа к ИИ-инструментам, ускорение разработки физического ИИ и трансформацию здравоохранения, производства и энергетики. Инженеры Alphabet тесно сотрудничают с техническими командами NVIDIA, используя AI и симуляцию для создания роботов с навыками захвата, переосмысления открытия лекарств и оптимизации энергосетей. Для поддержки этих исследований Google Cloud станет одним из первых, кто внедрит NVIDIA GB300 NVL72 и GPU NVIDIA RTX PRO 6000 Blackwell Server Edition.

Совместно с Disney Research разрабатывается Newton, опенсорсный физический движок, ускоренный NVIDIA Warp, который значительно повысит скорость машинного обучения в робототехнике.
nvidianews.nvidia.com

@ai_machinelearning_big_data

#news #ai #ml
Please open Telegram to view this post
VIEW IN TELEGRAM
HTML Embed Code:
2025/04/08 22:03:05
Back to Top